

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	django-cachalot 1.0.2 documentation

django-cachalot

Caches your Django ORM queries and automatically invalidates them.

[image: https://raw.github.com/BertrandBordage/django-cachalot/master/django-cachalot.jpg]

[image: http://img.shields.io/pypi/v/django-cachalot.svg?style=flat-square]
 [https://pypi.python.org/pypi/django-cachalot][image: http://img.shields.io/travis/BertrandBordage/django-cachalot/master.svg?style=flat-square]
 [https://travis-ci.org/BertrandBordage/django-cachalot][image: http://img.shields.io/coveralls/BertrandBordage/django-cachalot/master.svg?style=flat-square]
 [https://coveralls.io/r/BertrandBordage/django-cachalot?branch=master][image: http://img.shields.io/scrutinizer/g/BertrandBordage/django-cachalot/master.svg?style=flat-square]
 [https://scrutinizer-ci.com/g/BertrandBordage/django-cachalot/][image: http://img.shields.io/gratipay/BertrandBordage.svg?style=flat-square]
 [https://gratipay.com/BertrandBordage/]Since version 1.0.0 it is safe for production.

	Quick start
	Requirements

	Usage

	Settings

	Signal

	Limits
	Redis

	Memcached

	Locmem

	MySQL

	Raw SQL queries

	Multiple Servers

	API

	Benchmark
	Introduction

	Conditions

	Database results

	Cache results

	Database detailed results

	Cache detailed results

	What still needs to be done

	Bug reports, questions, discussion, new features

	How django-cachalot works
	Reverse engineering

	Monkey patching

	Legacy

	What’s new in django-cachalot?
	1.0.2

	1.0.1

	1.0.0

	1.0.0rc

	0.9.0

	0.8.1

	0.8.0

	0.7.0

	0.6.0

	0.5.0

	0.4.1

	0.4.0 (install broken)

	0.3.0

	0.2.0

	0.1.0

 Copyright 2014-2015, Bertrand Bordage.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-cachalot 1.0.2 documentation

Quick start

Requirements

	Django 1.6 or 1.7

	Python 2.6, 2.7, 3.2, 3.3, or 3.4

	a cache configured as 'default' with one of these backends:
	django-redis [https://github.com/niwibe/django-redis]

	memcached [https://docs.djangoproject.com/en/1.7/topics/cache/#memcached]
(using either python-memcached or pylibmc (but pylibmc is only supported
with Django >= 1.7))

	filebased [https://docs.djangoproject.com/en/1.7/topics/cache/#filesystem-caching]
(only with Django >= 1.7 as it was not thread-safe before)

	locmem [https://docs.djangoproject.com/en/1.7/topics/cache/#local-memory-caching]
(but it’s not shared between processes, see Limits)

	one of these databases:
	PostgreSQL

	SQLite

	MySQL (but you probably don’t need django-cachalot in this case,
see Limits)

Usage

	pip install django-cachalot

	Add 'cachalot', to your INSTALLED_APPS

	Be aware of the few limits

	If you use
django-debug-toolbar [https://github.com/django-debug-toolbar/django-debug-toolbar],
you can add 'cachalot.panels.CachalotPanel',
to your DEBUG_TOOLBAR_PANELS

	If you need to invalidate all django-cachalot cache keys from an external script
–typically after restoring a SQL database–, simply run
./manage.py invalidate_cachalot

	Enjoy!

Settings

CACHALOT_ENABLED

	Default:	True

	Description:	If set to False, disables SQL caching but keeps invalidating
to avoid stale cache

CACHALOT_CACHE

	Default:	'default'

	Description:	Alias of the cache from CACHES [https://docs.djangoproject.com/en/1.7/ref/settings/#std:setting-CACHES] used by django-cachalot

CACHALOT_CACHE_RANDOM

	Default:	False

	Description:	If set to True, caches random queries
(those with order_by('?'))

CACHALOT_INVALIDATE_RAW

	Default:	True

	Description:	If set to False, disables automatic invalidation on raw
SQL queries – read Raw SQL queries for more info

CACHALOT_QUERY_KEYGEN

	Default:	'cachalot.utils.get_query_cache_key'

	Description:	Python module path to the function that will be used to generate
the cache key of a SQL query

CACHALOT_TABLE_KEYGEN

	Default:	'cachalot.utils.get_table_cache_key'

	Description:	Python module path to the function that will be used to generate
the cache key of a SQL table

Dynamic overriding

Django-cachalot is built so that its settings can be dynamically changed.
For example:

from django.conf import settings
from django.test.utils import override_settings

with override_settings(CACHALOT_ENABLED=False):
 # SQL queries are not cached in this block

@override_settings(CACHALOT_CACHE='another_alias')
def your_function():
 # What’s in this function uses another cache

Globally disables SQL caching until you set it back to True
settings.CACHALOT_ENABLED = False

Signal

cachalot.signals.post_invalidation is available if you need to do something
just after a cache invalidation (when you modify something in a SQL table).
sender is the name of the SQL table invalidated, and a keyword argument
db_alias explains which database is affected by the invalidation.
Be careful when you specify sender, as it is sensible to string type.
To be sure, use Model._meta.db_table.

Example:

from cachalot.signals import post_invalidation
from django.dispatch import receiver
from django.core.mail import mail_admins
from django.contrib.auth import *

This prints a message to the console after each table invalidation
def invalidation_debug(sender, **kwargs):
 db_alias = kwargs['db_alias']
 print('%s was invalidated in the DB configured as %s'
 % (sender, db_alias))

post_invalidation.connect(invalidation_debug)

Using the `receiver` decorator is just a nicer way
to write the same thing as `signal.connect`.
Here we specify `sender` so that the function is executed only if
the table invalidated is the one specified.
We also connect it several times to be executed for several senders.
@receiver(post_invalidation, sender=User.groups.through._meta.db_table)
@receiver(post_invalidation, sender=User.user_permissions.through._meta.db_table)
@receiver(post_invalidation, sender=Group.permissions.through._meta.db_table)
def warn_admin(sender, **kwargs):
 mail_admins('User permissions changed',
 'Someone probably gained or lost Django permissions.')

 Copyright 2014-2015, Bertrand Bordage.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-cachalot 1.0.2 documentation

Limits

Redis

By default, Redis will not evict persistent cache keys (those with a None
timeout) when the maximum memory has been reached. The cache keys created
by django-cachalot are persistent, so if Redis runs out of memory,
django-cachalot and all other cache.set will raise
ResponseError: OOM command not allowed when used memory > 'maxmemory'.
because Redis is not allowed to delete persistent keys.

To avoid this, 2 solutions:

	If you only store disposable data in Redis, you can change
maxmemory-policy to allkeys-lru in your Redis configuration.
Be aware that this setting is global; all your Redis databases will use it.
If you don’t know what you’re doing, use the next solution or use
another cache backend.

	Increase maxmemory in your Redis configuration.
You can start by setting it to a high value (for example half of your RAM)
then decrease it by looking at the Redis database maximum size using
redis-cli info memory.

For more information, read
Using Redis as a LRU cache [http://redis.io/topics/lru-cache].

Memcached

By default, memcached is configured for small servers.
The maximum amount of memory used by memcached is 64 MB,
and the maximum memory per cache key is 1 MB. This latter limit can lead to
weird unhandled exceptions such as
Error: error 37 from memcached_set: SUCCESS
if you execute queries returning more than 1 MB of data.

To increase these limits, set the -I and -m arguments when starting
memcached. If you use Ubuntu and installed the package, you can modify
/etc/memcached.conf, add -I 10 on a newline to set the limit
per cache key to 10 MB, and if you want increase the already existing -m 64
to something like -m 1000 to set the maximum cache size to 1 GB.

Locmem

Locmem is a just a dict stored in a single Python process.
It’s not shared between processes, so don’t use locmem with django-cachalot
in a multi-processes project, if you use RQ or Celery for instance.

MySQL

This database software already provides by default something like
django-cachalot:
MySQL query cache [http://dev.mysql.com/doc/refman/5.7/en/query-cache.html].
Django-cachalot will slow down your queries if that query cache is enabled.
If it’s not enabled, django-cachalot will make queries much faster.
But you should probably better enable the query cache instead.

Raw SQL queries

Note

Don’t worry if you don’t understand what follow. That probably means you
don’t use raw queries, and therefore are not directly concerned by
those potential issues.

By default, django-cachalot tries to invalidate its cache after a raw query.
It detects if the raw query contains UPDATE, INSERT or DELETE,
and then invalidates the tables contained in that query by comparing
with models registered by Django.

This is quite robust, so if a query is not invalidated automatically
by this system, please send a bug report.
In the meantime, you can use the API to manually invalidate
the tables where data has changed.

However, this simple system can be too efficient in some cases and lead to
unwanted extra invalidations.
In such cases, you may want to partially disable this behaviour by
dynamically overriding settings to set
CACHALOT_INVALIDATE_RAW to False.
After that, use the API to manually invalidate the tables
you modified.

Multiple Servers

Django-cachalot relies on the computer clock to handle invalidation.
If you deploy the same Django project on multiple machines,
but with a centralized cache server, all the machines serving Django need
to have their clocks as synchronize as possible.
Otherwise, invalidations will happen with a latency from one server to another.
A difference of even a few seconds can be harmful, so double check this!

To keep your clocks synchronised, use the
Network Time Protocol [http://en.wikipedia.org/wiki/Network_Time_Protocol].

 Copyright 2014-2015, Bertrand Bordage.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-cachalot 1.0.2 documentation

API

Use these tools if the automatic behaviour of django-cachalot is not enough.
See Raw SQL queries.

	
cachalot.api.invalidate_tables(tables, cache_alias=None, db_alias=None)[source]

	Clears what was cached by django-cachalot implying one or more SQL tables
from tables.

If cache_alias is specified, it only clears the SQL queries stored
on this cache, otherwise queries from all caches are cleared.

If db_alias is specified, it only clears the SQL queries executed
on this database, otherwise queries from all databases are cleared.

	Parameters:	
	tables (iterable of strings) – SQL tables names

	cache_alias (string or NoneType) – Alias from the Django CACHES setting

	db_alias (string or NoneType) – Alias from the Django DATABASES setting

	Returns:	Nothing

	Return type:	NoneType

	
cachalot.api.invalidate_models(models, cache_alias=None, db_alias=None)[source]

	Shortcut for invalidate_tables where you can specify Django models
instead of SQL table names.

	Parameters:	
	models (iterable of django.db.models.Model subclasses) – Django models

	cache_alias (string or NoneType) – Alias from the Django CACHES setting

	db_alias (string or NoneType) – Alias from the Django DATABASES setting

	Returns:	Nothing

	Return type:	NoneType

	
cachalot.api.invalidate_all(cache_alias=None, db_alias=None)[source]

	Clears everything that was cached by django-cachalot.

If cache_alias is specified, it only clears the SQL queries stored
on this cache, otherwise queries from all caches are cleared.

If db_alias is specified, it only clears the SQL queries executed
on this database, otherwise queries from all databases are cleared.

	Parameters:	
	cache_alias (string or NoneType) – Alias from the Django CACHES setting

	db_alias – Alias from the Django DATABASES setting

	Returns:	Nothing

	Return type:	NoneType

 Copyright 2014-2015, Bertrand Bordage.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-cachalot 1.0.2 documentation

Benchmark

Contents

	Benchmark
	Introduction

	Conditions

	Database results

	Cache results

	Database detailed results
	MySQL

	PostgreSQL

	SQLite

	Cache detailed results
	File-based

	Locmem

	Memcached (python-memcached)

	Memcached (pylibmc)

	Redis

Introduction

This benchmark does not intend to be exhaustive nor fair to SQL.
It shows how django-cachalot behaves on an unoptimised application.
On an application using perfectly optimised SQL queries only,
django-cachalot may not be useful.
Unfortunately, most Django apps (including Django itself)
use unoptimised queries. Of course, they often lack useful indexes
(even though it only requires 20 characters per index…).
But what you may not know is that
the ORM currently generates totally unoptimised queries [1].

Conditions

In this benchmark, a small database is generated, and each test is executed 20 times under the following conditions:

	CPU
	Intel(R) Core(TM) i7-2670QM CPU @ 2.20GHz

	RAM
	12281280 kB

	Linux distribution
	Ubuntu 14.04 trusty

	Python
	2.7.6

	Django
	1.7.8

	cachalot
	1.0.2

	sqlite
	3.8.2

	PostgreSQL
	9.4.2

	MySQL
	5.5.43

	Redis
	2.8.4

	memcached
	1.4.14

	psycopg2
	2.6

	MySQLdb
	1.3.6

Database results

	mysql is 2.1× slower then 0.9× faster

	postgresql is 1.1× slower then 14.0× faster

	sqlite is 1.1× slower then 9.1× faster

Cache results

	filebased is 1.2× slower then 8.5× faster

	locmem is 1.1× slower then 8.9× faster

	memcached is 1.2× slower then 6.6× faster

	pylibmc is 1.1× slower then 7.3× faster

	redis is 1.1× slower then 7.8× faster

Database detailed results

MySQL

PostgreSQL

SQLite

Cache detailed results

File-based

Locmem

Memcached (python-memcached)

Memcached (pylibmc)

Redis

	[1]	The ORM fetches way too much data if you don’t restrict it using
.only and .defer. You can divide the execution time
of most queries by 2-3 by specifying what you want to fetch.
But specifying which data we want for each query is very long
and unmaintainable. An automation using field usage statistics
is possible and would drastically improve performance.
Other performance issues occur with slicing.
You can often optimise a sliced query using a subquery, like
YourModel.objects.filter(pk__in=YourModel.objects.filter(…)[10000:10050]).select_related(…)
instead of YourModel.objects.filter(…).select_related(…)[10000:10050].
I’ll maybe work on these issues one day.

 Copyright 2014-2015, Bertrand Bordage.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-cachalot 1.0.2 documentation

What still needs to be done

	Cache raw queries

	Test multi-location caches if possible

	Allow setting CACHALOT_CACHE to None in order to disable django-cachalot
persistence. SQL queries would only be cached during transactions, so setting
ATOMIC_REQUESTS to True would cache SQL queries only during
a request-response cycle. This would be useful for websites with a lot of
invalidations (social network for example), but with several times the same
SQL queries in a single response-request cycle, as it occurs in Django admin.

 Copyright 2014-2015, Bertrand Bordage.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-cachalot 1.0.2 documentation

Bug reports, questions, discussion, new features

	If you spotted a bug, please file a precise bug report
on GitHub [https://github.com/BertrandBordage/django-cachalot/issues]

	If you have a question on how django-cachalot works or to simply
discuss, go to our Google group [https://groups.google.com/forum/#!forum/django-cachalot].

	If you want to add a feature:
	if you have an idea on how to implement it, you can fork the project
and send a pull request, but please open an issue first, because
someone else could already be working on it

	if you’re sure that it’s a must-have feature, open an issue

	if it’s just a vague idea, please ask on google groups before

 Copyright 2014-2015, Bertrand Bordage.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-cachalot 1.0.2 documentation

How django-cachalot works

Reverse engineering

It’s a lot of Django reverse engineering combined with a strong test suite.
Such a test suite is crucial for a reverse engineering project.
If some important part of Django changes and breaks the expected behaviour,
you can be sure that the test suite will fail.

Monkey patching

Django-cachalot modifies Django in place during execution to add a caching tool
just before SQL queries are executed.
When a SQL query reads data, we save the result in cache. If that same query is
executed later, we fetch that result from cache.
When we detect INSERT, UPDATE or DELETE, we know which tables are
modified. All the previous cached queries can therefore be safely invalidated.

 Copyright 2014-2015, Bertrand Bordage.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-cachalot 1.0.2 documentation

Legacy

This work is highly inspired of
johnny-cache [https://github.com/jmoiron/johnny-cache], another easy-to-use
ORM caching tool! It’s working with Django <= 1.5.
I used it in production during 3 years, it’s an excellent module!

Unfortunately, we failed to make it migrate to Django 1.6 (I was involved).
It was mostly because of the transaction system that was entirely refactored.

I also noticed a few advanced invalidation issues when using QuerySet.extra
and some complex cases implying multi-table inheritance
and related ManyToManyField.

 Copyright 2014-2015, Bertrand Bordage.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	django-cachalot 1.0.2 documentation

What’s new in django-cachalot?

1.0.2

	Fixes an AttributeError occurring when excluding through a many-to-many
relation on a child model (using multi-table inheritance)

	Stops caching queries with random subqueries – for example
User.objects.filter(pk__in=User.objects.order_by('?'))

	Optimises automatic invalidation

	Adds a note about clock synchronisation

1.0.1

	Fixes an invalidation issue discovered by Helen Warren that was occurring
when updating a ManyToManyField after executing using .exclude
on that relation. For example, Permission.objects.all().delete() was not
invalidating User.objects.exclude(user_permissions=None)

	Fixes a UnicodeDecodeError introduced with python-memcached 1.54

	Adds a post_invalidation signal

1.0.0

Fixes a bug occurring when caching a SQL query using a non-ascii table name.

1.0.0rc

Added:

	Adds an invalidate_cachalot command to invalidate django-cachalot
from a script without having to clear the whole cache

	Adds the benchmark introduction, conditions & results to the documentation

	Adds a short guide on how to configure Redis as a LRU cache

Fixed:

	Fixes a rare invalidation issue occurring when updating a many-to-many table
after executing a queryset generating a HAVING SQL statement –
for example,
User.objects.first().user_permissions.add(Permission.objects.first())
was not invalidating
User.objects.annotate(n=Count('user_permissions')).filter(n__gte=1)

	Fixes an even rarer invalidation issue occurring when updating a many-to-many
table after executing a queryset filtering nested subqueries
by another subquery through that many-to-many table – for example:

User.objects.filter(
 pk__in=User.objects.filter(
 pk__in=User.objects.filter(
 user_permissions__in=Permission.objects.all())))

	Avoids setting useless cache keys by using table names instead of
Django-generated table alias

0.9.0

Added:

	Caches all queries implying Queryset.extra

	Invalidates raw queries

	Adds a simple API containing:
invalidate_tables, invalidate_models, invalidate_all

	Adds file-based cache support for Django 1.7

	Adds a setting to choose if random queries must be cached

	Adds 2 settings to customize how cache keys are generated

	Adds a django-debug-toolbar panel

	Adds a benchmark

Fixed:

	Rewrites invalidation for a better speed & memory performance

	Fixes a stale cache issue occurring when an invalidation is done
exactly during a SQL request on the invalidated table(s)

	Fixes a stale cache issue occurring after concurrent transactions

	Uses an infinite timeout

Removed:

	Simplifies cachalot_settings and forbids its use or modification

0.8.1

	Fixes an issue with pip if Django is not yet installed

0.8.0

	Adds multi-database support

	Adds invalidation when altering the DB schema using migrate, syncdb,
flush, loaddata commands (also invalidates South, if you use it)

	Small optimizations & simplifications

	Adds several tests

0.7.0

	Adds thread-safety

	Optimizes the amount of cache queries during transaction

0.6.0

	Adds memcached support

0.5.0

	Adds CACHALOT_ENABLED & CACHALOT_CACHE settings

	Allows settings to be dynamically overridden using cachalot_settings

	Adds some missing tests

0.4.1

	Fixes pip install.

0.4.0 (install broken)

	Adds Travis CI and adds compatibility for:
	Django 1.6 & 1.7

	Python 2.6, 2.7, 3.2, 3.3, & 3.4

	locmem & Redis

	SQLite, PostgreSQL, MySQL

0.3.0

	Handles transactions

	Adds lots of tests for complex cases

0.2.0

	Adds a test suite

	Fixes invalidation for data creation/deletion

	Stops caching on queries defining select or where arguments
with QuerySet.extra

0.1.0

Prototype simply caching all SQL queries reading the database
and trying to invalidate them when SQL queries modify the database.

Has issues invalidating deletions and creations.
Also caches QuerySet.extra queries but can’t reliably invalidate them.
No transaction support, no test, no multi-database support, etc.

 Copyright 2014-2015, Bertrand Bordage.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	django-cachalot 1.0.2 documentation

 Python Module Index

 c

 			

 		
 c	

 	[image: -]
 	
 cachalot	

 	
 	
 cachalot.api	

 Copyright 2014-2015, Bertrand Bordage.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	django-cachalot 1.0.2 documentation

Index

 C
 | I

C

 	

 	cachalot.api (module)

I

 	

 	invalidate_all() (in module cachalot.api)

 	invalidate_models() (in module cachalot.api)

 	

 	invalidate_tables() (in module cachalot.api)

 Copyright 2014-2015, Bertrand Bordage.
 Created using Sphinx 1.3.1.

 _static/minus.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/plus.png

search.html

 Navigation

 		
 index

 		
 modules |

 		django-cachalot 1.0.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014-2015, Bertrand Bordage.
 Created using Sphinx 1.3.1.

_static/ajax-loader.gif

_static/down.png

_static/comment-close.png

_static/up.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		django-cachalot 1.0.2 documentation »

 All modules for which code is available

		cachalot.api

 © Copyright 2014-2015, Bertrand Bordage.
 Created using Sphinx 1.3.1.

_static/up-pressed.png

_static/down-pressed.png

_modules/cachalot/api.html

 Navigation

 		
 index

 		
 modules |

 		django-cachalot 1.0.2 documentation »

 		Module code »

 Source code for cachalot.api

coding: utf-8

from __future__ import unicode_literals

from django.conf import settings

from .cache import cachalot_caches
from .utils import _get_table_cache_key, _invalidate_table_cache_keys

__all__ = ('invalidate_tables', 'invalidate_models', 'invalidate_all')

def _aliases_iterator(cache_alias, db_alias):
 cache_aliases = settings.CACHES if cache_alias is None else (cache_alias,)
 db_aliases = settings.DATABASES if db_alias is None else (db_alias,)
 for cache_alias in cache_aliases:
 for db_alias in db_aliases:
 yield cache_alias, db_alias

[docs]def invalidate_tables(tables, cache_alias=None, db_alias=None):
 """
 Clears what was cached by django-cachalot implying one or more SQL tables
 from ``tables``.

 If ``cache_alias`` is specified, it only clears the SQL queries stored
 on this cache, otherwise queries from all caches are cleared.

 If ``db_alias`` is specified, it only clears the SQL queries executed
 on this database, otherwise queries from all databases are cleared.

 :arg tables: SQL tables names
 :type tables: iterable of strings
 :arg cache_alias: Alias from the Django ``CACHES`` setting
 :type cache_alias: string or NoneType
 :arg db_alias: Alias from the Django ``DATABASES`` setting
 :type db_alias: string or NoneType
 :returns: Nothing
 :rtype: NoneType
 """

 for cache_alias, db_alias in _aliases_iterator(cache_alias, db_alias):
 table_cache_keys = [_get_table_cache_key(db_alias, t) for t in tables]
 cache = cachalot_caches.get_cache(cache_alias)
 _invalidate_table_cache_keys(cache, table_cache_keys)

[docs]def invalidate_models(models, cache_alias=None, db_alias=None):
 """
 Shortcut for ``invalidate_tables`` where you can specify Django models
 instead of SQL table names.

 :arg models: Django models
 :type models: iterable of ``django.db.models.Model`` subclasses
 :arg cache_alias: Alias from the Django ``CACHES`` setting
 :type cache_alias: string or NoneType
 :arg db_alias: Alias from the Django ``DATABASES`` setting
 :type db_alias: string or NoneType
 :returns: Nothing
 :rtype: NoneType
 """

 invalidate_tables([model._meta.db_table for model in models],
 cache_alias, db_alias)

[docs]def invalidate_all(cache_alias=None, db_alias=None):
 """
 Clears everything that was cached by django-cachalot.

 If ``cache_alias`` is specified, it only clears the SQL queries stored
 on this cache, otherwise queries from all caches are cleared.

 If ``db_alias`` is specified, it only clears the SQL queries executed
 on this database, otherwise queries from all databases are cleared.

 :arg cache_alias: Alias from the Django ``CACHES`` setting
 :type cache_alias: string or NoneType
 :arg db_alias: Alias from the Django ``DATABASES`` setting
 :type cache_alias: string or NoneType
 :returns: Nothing
 :rtype: NoneType
 """

 for cache_alias, db_alias in _aliases_iterator(cache_alias, db_alias):
 cachalot_caches.invalidate_all(cache_alias, db_alias)

 © Copyright 2014-2015, Bertrand Bordage.
 Created using Sphinx 1.3.1.

