

 Navigation

 	
 index

 	
 next |

 	django-cachalot 0.9.0 documentation

django-cachalot

Caches your Django ORM queries and automatically invalidates them.

[image: https://raw.github.com/BertrandBordage/django-cachalot/master/django-cachalot.jpg]

[image: http://img.shields.io/pypi/v/django-cachalot.svg?style=flat-square]
 [https://pypi.python.org/pypi/django-cachalot][image: http://img.shields.io/travis/BertrandBordage/django-cachalot/master.svg?style=flat-square]
 [https://travis-ci.org/BertrandBordage/django-cachalot][image: http://img.shields.io/coveralls/BertrandBordage/django-cachalot/master.svg?style=flat-square]
 [https://coveralls.io/r/BertrandBordage/django-cachalot?branch=master][image: http://img.shields.io/scrutinizer/g/BertrandBordage/django-cachalot/master.svg?style=flat-square]
 [https://scrutinizer-ci.com/g/BertrandBordage/django-cachalot/][image: http://img.shields.io/gratipay/BertrandBordage.svg?style=flat-square]
 [https://gratipay.com/BertrandBordage/]Currently in beta, do not use in production

	Quick start
	Requirements

	Usage

	Settings

	Limits
	Locmem

	MySQL

	Raw SQL queries

	API

	What still needs to be done
	For version 1.0

	Bug reports, questions, discussion, new features

	How django-cachalot works
	Reverse engineering

	Monkey patching

	Legacy

	What’s new in django-cachalot?
	0.9.0

	0.8.1

	0.8.0

	0.7.0

	0.6.0

	0.5.0

	0.4.1

	0.4.0 (install broken)

	0.3.0

	0.2.0

	0.1.0

 Copyright 2014, Bertrand Bordage.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-cachalot 0.9.0 documentation

Quick start

Requirements

	Django 1.6 or 1.7

	Python 2.6, 2.7, 3.2, 3.3, or 3.4

	a cache configured as default with one of these backends:

	django-redis [https://github.com/niwibe/django-redis]

	memcached [https://docs.djangoproject.com/en/1.7/topics/cache/#memcached]
(using either python-memcached or pylibmc (but pylibmc is only supported

with Django >= 1.7))

	filebased [https://docs.djangoproject.com/en/1.7/topics/cache/#filesystem-caching]
(only with Django >= 1.7 as it was not thread-safe before)

	locmem [https://docs.djangoproject.com/en/1.7/topics/cache/#local-memory-caching]
(but it’s not shared between processes, see Limits)

	one of these databases:

	PostgreSQL

	SQLite

	
	MySQL (but you probably don’t need django-cachalot in this case,

	see Limits)

Usage

	pip install django-cachalot

	Add 'cachalot', to your INSTALLED_APPS

	Be aware of the few limits

	If you use
django-debug-toolbar [https://github.com/django-debug-toolbar/django-debug-toolbar],
you can add 'cachalot.panels.CachalotPanel',
to your DEBUG_TOOLBAR_PANELS

	Enjoy!

Settings

CACHALOT_ENABLED

	Default:	True

	Description:	If set to False, disables SQL caching but keeps invalidating
to avoid stale cache

CACHALOT_CACHE

	Default:	'default'

	Description:	Alias of the cache from CACHES [https://docs.djangoproject.com/en/1.7/ref/settings/#std:setting-CACHES] used by django-cachalot

CACHALOT_CACHE_RANDOM

	Default:	False

	Description:	If set to True, caches random queries
(those with order_by('?'))

CACHALOT_INVALIDATE_RAW

	Default:	True

	Description:	If set to False, disables automatic invalidation on raw
SQL queries – read Raw SQL queries for more info

CACHALOT_QUERY_KEYGEN

	Default:	'cachalot.utils.get_query_cache_key'

	Description:	Python module path to the function that will be used to generate
the cache key of a SQL query

CACHALOT_TABLE_KEYGEN

	Default:	'cachalot.utils.get_table_cache_key'

	Description:	Python module path to the function that will be used to generate
the cache key of a SQL table

Dynamic overriding

Django-cachalot is built so that its settings can be dynamically changed.

For example:

from django.conf import settings
from django.test.utils import override_settings

with override_settings(CACHALOT_ENABLED=False):
 # SQL queries are not cached in this block

@override_settings(CACHALOT_CACHE='another_alias')
def your_function():
 # What’s in this function uses another cache

Globally disables SQL caching until you set it back to True
settings.CACHALOT_ENABLED = False

 Copyright 2014, Bertrand Bordage.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-cachalot 0.9.0 documentation

Limits

Locmem

Locmem is a just a dict stored in a single Python process.
It’s not shared between processes, so don’t use locmem with django-cachalot
in a multi-processes project, if you use RQ or Celery for instance.

MySQL

This database software already provides by default something like
django-cachalot:
MySQL query cache [http://dev.mysql.com/doc/refman/5.7/en/query-cache.html].
Django-cachalot will slow down your queries if that query cache is enabled.
If it’s not enabled, django-cachalot will make queries much faster.
But you should probably better enable the query cache instead.

Raw SQL queries

Note

Don’t worry if you don’t understand what follow. That probably means you
don’t use raw queries, and therefore are not directly concerned by
those potential issues.

By default, django-cachalot tries to invalidate its cache after a raw query.
It detects if the raw query contains UPDATE, INSERT or DELETE,
and then invalidates the tables contained in that query by comparing
with models registered by Django.

This is quite robust, so if a query is not invalidated automatically
by this system, please send a bug report.
In the meantime, you can use the API to manually invalidate
the tables where data has changed.

However, this simple system can be too efficient in some cases and lead to
unwanted extra invalidations.
In such cases, you may want to partially disable this behaviour by
dynamically overriding settings to set
CACHALOT_INVALIDATE_RAW to False.
After that, use the API to manually invalidate the tables
you modified.

 Copyright 2014, Bertrand Bordage.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-cachalot 0.9.0 documentation

API

Use these tools if the automatic behaviour of django-cachalot is not enough.
Typically, use invalidate_tables or invalidate_models after each raw
SQL query modifying the database.

 Copyright 2014, Bertrand Bordage.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-cachalot 0.9.0 documentation

What still needs to be done

For version 1.0

	Cache raw queries

	Test multi-location caches

	Add a management command to invalidate everything

 Copyright 2014, Bertrand Bordage.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-cachalot 0.9.0 documentation

Bug reports, questions, discussion, new features

	If you spotted a bug, please file a precise bug report
on GitHub [https://github.com/BertrandBordage/django-cachalot/issues]

	If you have a question on how django-cachalot works or to simply
discuss, go to our Google group [https://groups.google.com/forum/#!forum/django-cachalot].

	If you want to add a feature:
	if you have an idea on how to implement it, you can fork the project
and send a pull request, but please open an issue first, because
someone else could already be working on it

	if you’re sure that it’s a must-have feature, open an issue

	if it’s just a vague idea, please ask on google groups before

 Copyright 2014, Bertrand Bordage.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-cachalot 0.9.0 documentation

How django-cachalot works

Reverse engineering

It’s a lot of Django reverse engineering combined with a strong test suite.
Such a test suite is crucial for a reverse engineering project.
If some important part of Django changes and breaks the expected behaviour,
you can be sure that the test suite will fail.

Monkey patching

django-cachalot modifies Django in place during execution to add a caching tool
just before SQL queries are executed.
We detect which cache keys must be removed when some data
is created/changed/deleted on the database.

 Copyright 2014, Bertrand Bordage.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-cachalot 0.9.0 documentation

Legacy

This work is highly inspired of
johnny-cache [https://github.com/jmoiron/johnny-cache], another easy-to-use
ORM caching tool! It’s working with Django <= 1.5.
I used it in production during 3 years, it’s an excellent module!

Unfortunately, we failed to make it migrate to Django 1.6 (I was involved).
It was mostly because of the transaction system that was entirely refactored.

I also noticed a few advanced invalidation issues when using QuerySet.extra
and some complex cases implying multi-table inheritance
and related ManyToManyField.

 Copyright 2014, Bertrand Bordage.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	django-cachalot 0.9.0 documentation

What’s new in django-cachalot?

0.9.0

Added:

	Caches all queries implying Queryset.extra

	Invalidates raw queries

	Adds a simple API containing:
invalidate_tables, invalidate_models, invalidate_all

	Adds file-based cache support for Django 1.7

	Adds a setting to choose if random queries must be cached

	Adds 2 settings to customize how cache keys are generated

	Adds a django-debug-toolbar panel

	Adds a benchmark

Fixed:

	Rewrites invalidation for a better speed & memory performance

	Fixes a stale cache issue occurring when an invalidation is done
exactly during a SQL request on the invalidated table(s)

	Fixes a stale cache issue occurring after concurrent transactions

	Uses an infinite timeout

Removed:

	Simplifies cachalot_settings and forbids its use or modification

0.8.1

	Fixes an issue with pip if Django is not yet installed

0.8.0

	Adds multi-database support

	Adds invalidation when altering the DB schema using migrate, syncdb,
flush, loaddata commands (also invalidates South, if you use it)

	Small optimizations & simplifications

	Adds several tests

0.7.0

	Adds thread-safety

	Optimizes the amount of cache queries during transaction

0.6.0

	Adds memcached support

0.5.0

	Adds CACHALOT_ENABLED & CACHALOT_CACHE settings

	Allows settings to be dynamically overridden using cachalot_settings

	Adds some missing tests

0.4.1

	Fixes pip install.

0.4.0 (install broken)

	Adds Travis CI and adds compatibility for:
	Django 1.6 & 1.7

	Python 2.6, 2.7, 3.2, 3.3, & 3.4

	locmem & Redis

	SQLite, PostgreSQL, MySQL

0.3.0

	Handles transactions

	Adds lots of tests for complex cases

0.2.0

	Adds a test suite

	Fixes invalidation for data creation/deletion

	Stops caching on queries defining select or where arguments
with QuerySet.extra

0.1.0

Prototype simply caching all SQL queries reading the database
and trying to invalidate them when SQL queries modify the database.

Has issues invalidating deletions and creations.
Also caches QuerySet.extra queries but can’t reliably invalidate them.
No transaction support, no test, no multi-database support, etc.

 Copyright 2014, Bertrand Bordage.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	django-cachalot 0.9.0 documentation

Index

 Copyright 2014, Bertrand Bordage.
 Created using Sphinx 1.2.2.

 _static/comment-bright.png

_static/file.png

_static/plus.png

_static/minus.png

_static/comment.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		django-cachalot 0.9.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Bertrand Bordage.
 Created using Sphinx 1.2.2.

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

