

django-cachalot

Caches your Django ORM queries and automatically invalidates them.

[image: _images/django-cachalot.jpg]

[image: _images/django-cachalot.svg]
 [https://pypi.python.org/pypi/django-cachalot][image: _images/master.svg]
 [https://travis-ci.org/noripyt/django-cachalot][image: _images/master1.svg]
 [https://coveralls.io/r/noripyt/django-cachalot?branch=master][image: _images/master2.svg]
 [https://scrutinizer-ci.com/g/noripyt/django-cachalot/][image: _images/Lobby.svg]
 [https://gitter.im/django-cachalot/Lobby]

	Introduction
	Should you use it?

	Features

	Comparison with similar tools

	Quick start
	Requirements

	Usage

	Settings

	manage.py command

	Template utils

	Signal

	Limits
	High rate of database modifications

	Redis

	Memcached

	Locmem

	Filebased

	MySQL

	Raw SQL queries

	Multiple servers clock synchronisation

	Replication server

	Multiple cache servers for the same database

	API

	Benchmark
	Introduction

	Conditions

	Database results

	Cache results

	Database detailed results

	Cache detailed results

	What could still be done

	Bug reports, questions, discussion, new features

	How django-cachalot works
	Reverse engineering

	Monkey patching

	Legacy

	What’s new in django-cachalot?
	2.0.2

	2.0.1

	2.0.0

	1.5.0

	1.4.1

	1.4.0

	1.3.0

	1.2.1

	1.2.0

	1.1.0

	1.0.3

	1.0.2

	1.0.1

	1.0.0

	1.0.0rc

	0.9.0

	0.8.1

	0.8.0

	0.7.0

	0.6.0

	0.5.0

	0.4.1

	0.4.0 (install broken)

	0.3.0

	0.2.0

	0.1.0

Introduction

Should you use it?

Django-cachalot is the perfect speedup tool for most Django projects.
It will speedup a website of 100 000 visits per month without any problem.
In fact, the more visitors you have, the faster the website becomes.
That’s because every possible SQL query on the project ends up being cached.

Django-cachalot is especially efficient in the Django administration website
since it’s unfortunately badly optimised (use foreign keys in list_editable
if you need to be convinced).

However, it’s not suited for projects where there is a high number
of modifications per minute on each table, like a social network with
more than a 50 messages per minute. Django-cachalot may still give a small
speedup in such cases, but it may also slow things a bit
(in the worst case scenario, a 20% slowdown,
according to the benchmark).
If you have a website like that, optimising your SQL database and queries
is the number one thing you have to do.

There is also an obvious case where you don’t need django-cachalot:
when the project is already fast enough (all pages load in less than 300 ms).
Like any other dependency, django-cachalot is a potential source of problems
(even though it’s currently bug free).
Don’t use dependencies you can avoid, a “future you” may thank you for that.

Features

	Saves in cache the results of any SQL query generated by the Django ORM
that reads data. These saved results are then returned instead
of executing the same SQL query, which is faster.

	The first time a query is executed is about 10% slower, then the following
times are way faster (7× faster being the average).

	Automatically invalidates saved results,
so that you never get stale results.

	Invalidates per table, not per object: if you change an object,
all the queries done on other objects of the same model are also invalidated.
This is unfortunately technically impossible to make a reliable
per-object cache. Don’t be fooled by packages pretending having
that per-object feature, they are unreliable and dangerous for your data.

	Handles everything in the ORM. You can use the most advanced features
from the ORM without a single issue, django-cachalot is extremely robust.

	An easy control thanks to Settings and a simple API.
But that’s only required if you have a complex infrastructure. Most people
will never use settings or the API.

	A few bonus features like
a signal triggered at each database change
(including bulk changes) and
a template tag for a better template fragment caching.

Comparison with similar tools

This comparison was done in December 2015. It compares django-cachalot
to the other popular automatic ORM caches at the moment:
django-cache-machine [https://github.com/django-cache-machine/django-cache-machine]
& django-cacheops [https://github.com/Suor/django-cacheops].

Features

	Feature

	cachalot

	cache-machine

	cacheops

	Easy to install

	✔

	✘

	quite

	Cache agnostic

	✔

	✔

	✘

	Type of invalidation

	per table

	per object

	per query

	CPU performance

	excellent

	excellent

	excellent

	Memory performance

	excellent

	good

	excellent

	Reliable

	✔

	✘

	✘

	Useful for > 50 modifications per minute

	✘

	✔

	✔

	Handles transactions

	✔

	✘

	✘

	Handles Django admin save

	✔

	✘

	✘

	Handles multi-table inheritance

	✔

	✔

	✘

	Handles QuerySet.count

	✔

	✘

	✔

	Handles QuerySet.aggregate/annotate

	✔

	✔

	✘

	Handles QuerySet.update

	✔

	✘

	✘

	Handles QuerySet.select_related

	✔

	✔

	✘

	Handles QuerySet.extra

	✔

	✘

	✘

	Handles QuerySet.values/values_list

	✔

	✘

	✔

	Handles QuerySet.dates/datetimes

	✔

	✘

	✔

	Handles subqueries

	✔

	✔

	✘

	Handles querysets generating a SQL HAVING keyword

	✔

	✔

	✘

	Handles cursor.execute

	✔

	✘

	✘

	Handles the Django command flush

	✔

	✘

	✘

Explanations

“Handles [a feature]” means that the package correctly invalidates SQL queries
using that feature. So if a package doesn’t handle a feature, you may get
stale query results when using this feature.
It does not mean that it caches a query with this feature, although
django-cachalot caches all queries except random queries
or those ran through cursor.execute.

This comparison was done by running the test suite of cachalot against
cache-machine & cacheops. This test suite is indeed relevant for other
packages (such as cache-machine & cacheops) since most of it is written in
a cachalot-independent way.

Similarly, the performance comparison was done using our benchmark,
coupled with a memory measure.

To me, cache-machine & cacheops are not reliable because of these reasons:

	Neither cache-machine or cacheops handle transactions, which is critical.
Transactions are used a lot in Django internals: at least
in any Django admin save, many-to-many relations modification,
bulk creation or update, migrations, session save.
If an error occurs during one of these operations, good luck finding
if stale data is returned. The best you can do in this case is manually
clearing the cache.

	If you use a query that’s not handled, you may get stale data. It ends up
ruining your database since it lets you save modifications to stale data,
therefore overwriting the latest version that’s in the database.
And you always end up using queries that are not handled since there is no
list of unhandled queries in the documentation of each module.

	In the case of cache-machine, another issue is that it relies
on “flush lists”, which can’t work reliably when implemented in a cache
like this (see cache-machine#107 [https://github.com/django-cache-machine/django-cache-machine/issues/107]).

Number of lines of code

Django-cachalot tries to be as minimalist as possible, while handling most
use cases. Being minimalist is essential to create maintainable projects,
and having a large test suite is essential to get an excellent quality.
The statistics below speak for themselves…

	Project part

	cachalot

	cache-machine

	cacheops

	Application

	743

	843

	1662

	Tests

	3023

	659

	1491

Quick start

Requirements

	Django 1.11 or 2.0

	Python 2.7, 3.4, 3.5 or 3.6

	a cache configured as 'default' with one of these backends:

	django-redis [https://github.com/niwinz/django-redis]

	memcached [https://docs.djangoproject.com/en/2.0/topics/cache/#memcached]
(using either python-memcached or pylibmc)

	filebased [https://docs.djangoproject.com/en/2.0/topics/cache/#filesystem-caching]

	locmem [https://docs.djangoproject.com/en/2.0/topics/cache/#local-memory-caching]
(but it’s not shared between processes, see locmem limits)

	one of these databases:

	PostgreSQL

	SQLite

	MySQL (but on older versions like MySQL 5.5, django-cachalot has no effect,
see MySQL limits)

Usage

	pip install django-cachalot

	Add 'cachalot', to your INSTALLED_APPS

	If you use multiple servers with a common cache server,
double check their clock synchronisation

	If you modify data outside Django
– typically after restoring a SQL database –,
use the manage.py command

	Be aware of the few other limits

	If you use
django-debug-toolbar [https://github.com/jazzband/django-debug-toolbar],
you can add 'cachalot.panels.CachalotPanel',
to your DEBUG_TOOLBAR_PANELS

	Enjoy!

Settings

CACHALOT_ENABLED

	Default

	True

	Description

	If set to False, disables SQL caching but keeps invalidating
to avoid stale cache.

CACHALOT_CACHE

	Default

	'default'

	Description

	Alias of the cache from CACHES [https://docs.djangoproject.com/en/2.0/ref/settings/#std:setting-CACHES] used by django-cachalot.

Warning

After modifying this setting, you should invalidate the cache
using the manage.py command or the API.
Indeed, only the cache configured using this setting is automatically
invalidated by django-cachalot – for optimisation reasons. So when you
change this setting, you end up on a cache that may contain stale data.

CACHALOT_DATABASES

	Default

	'supported_only'

	Description

	List, tuple, set or frozenset of database aliases from DATABASES [https://docs.djangoproject.com/en/2.0/ref/settings/#std:setting-DATABASES] against
which django-cachalot will do caching. By default, the special value
'supported_only' enables django-cachalot only on supported database
engines.

CACHALOT_TIMEOUT

	Default

	None

	Description

	Number of seconds during which the cache should consider data as valid.
None means an infinite timeout.

Warning

Cache timeouts don’t work in a strict way on most cache backends.
A cache might not keep data during the requested timeout:
it can keep it in memory during a shorter time than the specified timeout.
It can even keep it longer, even if data is not returned when you request it.
So don’t rely on timeouts to limit the size of your database,
you might face some unexpected behaviour.
Always set the maximum cache size instead.

CACHALOT_CACHE_RANDOM

	Default

	False

	Description

	If set to True, caches random queries
(those with order_by('?')).

CACHALOT_INVALIDATE_RAW

	Default

	True

	Description

	If set to False, disables automatic invalidation on raw
SQL queries – read raw queries limits for more info.

CACHALOT_ONLY_CACHABLE_TABLES

	Default

	frozenset()

	Description

	Sequence of SQL table names that will be the only ones django-cachalot
will cache. Only queries with a subset of these tables will be cached.
The sequence being empty (as it is by default) doesn’t mean that no table
can be cached: it disables this setting, so any table can be cached.
CACHALOT_UNCACHABLE_TABLES has more weight than this:
if you add a table to both settings, it will never be cached.
Run ./manage.py invalidate_cachalot after changing this setting.

CACHALOT_UNCACHABLE_TABLES

	Default

	frozenset(('django_migrations',))

	Description

	Sequence of SQL table names that will be ignored by django-cachalot.
Queries using a table mentioned in this setting will not be cached.
Always keep 'django_migrations' in it, otherwise you may face
some issues, especially during tests.
Run ./manage.py invalidate_cachalot after changing this setting.

CACHALOT_QUERY_KEYGEN

	Default

	'cachalot.utils.get_query_cache_key'

	Description

	Python module path to the function that will be used to generate
the cache key of a SQL query.
Run ./manage.py invalidate_cachalot
after changing this setting.

CACHALOT_TABLE_KEYGEN

	Default

	'cachalot.utils.get_table_cache_key'

	Description

	Python module path to the function that will be used to generate
the cache key of a SQL table.
Clear your cache after changing this setting (it’s not enough
to use ./manage.py invalidate_cachalot).

manage.py command

manage.py invalidate_cachalot is available to invalidate all the cache keys
set by django-cachalot. If you run it without any argument, it invalidates all
models on all caches and all databases. But you can specify what applications
or models are invalidated, and on which cache or database.

Examples:

	./manage.py invalidate_cachalot auth

	Invalidates all models from the ‘auth’ application.

	./manage.py invalidate_cachalot your_app auth.User

	Invalidates all models from the ‘your_app’ application, but also
the User model from the ‘auth’ application.

	./manage.py invalidate_cachalot -c redis -p postgresql

	Invalidates all models,
but only for the database configured with the ‘postgresql’ alias,
and only for the cache configured with the ‘redis’ alias.

Template utils

Caching template fragments [https://docs.djangoproject.com/en/2.0/topics/cache/#template-fragment-caching]
can be extremely powerful to speedup a Django application. However, it often
means you have to adapt your models to get a relevant cache key, typically
by adding a timestamp that refers to the last modification of the object.

But modifying your models and caching template fragments leads
to stale contents most of the time. There’s a simple reason to that: we rarely
only display the data from one model, we often want to display related data,
such as the number of books written by someone, display a quote from a book
of this author, display similar authors, etc. In such situations,
it’s impossible to cache template fragments and avoid stale rendered data.

Fortunately, django-cachalot provides an easy way to fix this issue,
by simply checking when was the last time data changed in the given models
or tables. The API function
get_last_invalidation does that,
and we provided a get_last_invalidation template tag to directly
use it in templates. It works exactly the same as the API function.

Django template tag

Example of a quite heavy nested loop with a lot of SQL queries
(considering no prefetch has been done):

{% load cachalot cache %}

{% get_last_invalidation 'auth.User' 'library.Book' 'library.Author' as last_invalidation %}
{% cache 3600 short_user_profile last_invalidation %}
 {{ user }} has borrowed these books:
 {% for book in user.borrowed_books.all %}
 <div class="book">
 {{ book }} ({{ book.pages.count }} pages)

 {% for author in book.authors.all %}
 {{ author }}{% if not forloop.last %},{% endif %}
 {% endfor %}

 </div>
 {% endfor %}
{% endcache %}

cache_alias and db_alias keywords arguments of this template tag
are also available (see
cachalot.api.get_last_invalidation()).

Jinja2 statement and function

A Jinja2 extension for django-cachalot can be used, simply add
'cachalot.jinja2ext.cachalot', to the 'extensions' list of the OPTIONS
dict in the Django TEMPLATES settings.

It provides:

	The API function
get_last_invalidation directly
available as a function anywhere in Jinja2.

	An Jinja2 statement equivalent to the cache template tag of Django.

The cache does the same thing as its Django template equivalent,
except that cache_key and timeout are optional keyword arguments, and
you need to add commas between arguments. When unspecified, cache_key is
generated from the template filename plus the statement line number, and
timeout defaults to infinite. To specify which cache should store the
saved content, use the cache_alias keyword argument.

Same example than above, but for Jinja2:

{% cache get_last_invalidation('auth.User', 'library.Book', 'library.Author'),
 cache_key='short_user_profile', timeout=3600 %}
 {{ user }} has borrowed these books:
 {% for book in user.borrowed_books.all() %}
 <div class="book">
 {{ book }} ({{ book.pages.count() }} pages)

 {% for author in book.authors.all() %}
 {{ author }}{% if not loop.last %},{% endif %}
 {% endfor %}

 </div>
 {% endfor %}
{% endcache %}

Signal

cachalot.signals.post_invalidation is available if you need to do something
just after a cache invalidation (when you modify something in a SQL table).
sender is the name of the SQL table invalidated, and a keyword argument
db_alias explains which database is affected by the invalidation.
Be careful when you specify sender, as it is sensible to string type.
To be sure, use Model._meta.db_table.

This signal is not directly triggered during transactions,
it waits until the current transaction ends. This signal is also triggered
when invalidating using the API or the manage.py command. Be careful
when using multiple databases, if you invalidate all databases by simply
calling invalidate(), this signal will be triggered one time
for each database and for each model. If you have 3 databases and 20 models,
invalidate() will trigger the signal 60 times.

Example:

from cachalot.signals import post_invalidation
from django.dispatch import receiver
from django.core.mail import mail_admins
from django.contrib.auth import *

This prints a message to the console after each table invalidation
def invalidation_debug(sender, **kwargs):
 db_alias = kwargs['db_alias']
 print('%s was invalidated in the DB configured as %s'
 % (sender, db_alias))

post_invalidation.connect(invalidation_debug)

Using the `receiver` decorator is just a nicer way
to write the same thing as `signal.connect`.
Here we specify `sender` so that the function is executed only if
the table invalidated is the one specified.
We also connect it several times to be executed for several senders.
@receiver(post_invalidation, sender=User.groups.through._meta.db_table)
@receiver(post_invalidation, sender=User.user_permissions.through._meta.db_table)
@receiver(post_invalidation, sender=Group.permissions.through._meta.db_table)
def warn_admin(sender, **kwargs):
 mail_admins('User permissions changed',
 'Someone probably gained or lost Django permissions.')

Limits

High rate of database modifications

Do not use django-cachalot if your project has more than 50 database
modifications per second on most of its tables. There will be no problem,
but django-cachalot will become inefficient and will end up slowing
your project instead of speeding it.
Read the introduction for more details.

Redis

By default, Redis will not evict persistent cache keys (those with a None
timeout) when the maximum memory has been reached. The cache keys created
by django-cachalot are persistent by default, so if Redis runs out of memory,
django-cachalot and all other cache.set will raise
ResponseError: OOM command not allowed when used memory > 'maxmemory'.
because Redis is not allowed to delete persistent keys.

To avoid this, 2 solutions:

	If you only store disposable data in Redis, you can change
maxmemory-policy to allkeys-lru in your Redis configuration.
Be aware that this setting is global; all your Redis databases will use it.
If you don’t know what you’re doing, use the next solution or use
another cache backend.

	Increase maxmemory in your Redis configuration.
You can start by setting it to a high value (for example half of your RAM)
then decrease it by looking at the Redis database maximum size using
redis-cli info memory.

For more information, read
Using Redis as a LRU cache [http://redis.io/topics/lru-cache].

Memcached

By default, memcached is configured for small servers.
The maximum amount of memory used by memcached is 64 MB,
and the maximum memory per cache key is 1 MB. This latter limit can lead to
weird unhandled exceptions such as
Error: error 37 from memcached_set: SUCCESS
if you execute queries returning more than 1 MB of data.

To increase these limits, set the -I and -m arguments when starting
memcached. If you use Ubuntu and installed the package, you can modify
/etc/memcached.conf, add -I 10m on a newline to set the limit
per cache key to 10 MB, and if you want increase the already existing -m 64
to something like -m 1000 to set the maximum cache size to 1 GB.

Locmem

Locmem is a just a dict stored in a single Python process.
It’s not shared between processes, so don’t use locmem with django-cachalot
in a multi-processes project, if you use RQ or Celery for instance.

Filebased

Filebased, a simple persistent cache implemented in Django, has a small bug
(#25501 [https://code.djangoproject.com/ticket/25501]):
it cannot cache some objects, like psycopg2 ranges.
If you use range fields from django.contrib.postgres and your Django
version is affected by this bug, you need to add the tables using range fields
to CACHALOT_UNCACHABLE_TABLES.

MySQL

This database software already provides by default something like
django-cachalot:
MySQL query cache [http://dev.mysql.com/doc/refman/5.7/en/query-cache.html].
Unfortunately, this built-in query cache has no significant effect
since at least MySQL 5.7. However, in MySQL 5.5 it was working so well that
django-cachalot was not improving performance.
So depending on the MySQL version, django-cachalot may be useless.
See the current django-cachalot benchmark and compare it with
an older run of the same benchmark [http://django-cachalot.readthedocs.io/en/1.2.0/benchmark.html]
to see the clear difference: MySQL became 4 × slower since then!

Raw SQL queries

Note

Don’t worry if you don’t understand what follow. That probably means you
don’t use raw queries, and therefore are not directly concerned by
those potential issues.

By default, django-cachalot tries to invalidate its cache after a raw query.
It detects if the raw query contains UPDATE, INSERT, DELETE,
ALTER, CREATE or DROP and then invalidates the tables contained
in that query by comparing with models registered by Django.

This is quite robust, so if a query is not invalidated automatically
by this system, please send a bug report.
In the meantime, you can use the API to manually invalidate
the tables where data has changed.

However, this simple system can be too efficient in some very rare cases
and lead to unwanted extra invalidations.

Multiple servers clock synchronisation

Django-cachalot relies on the computer clock to handle invalidation.
If you deploy the same Django project on multiple machines,
but with a centralised cache server, all the machines serving Django need
to have their clocks as synchronised as possible.
Otherwise, invalidations will happen with a latency from one server to another.
A difference of even a few seconds can be harmful, so double check this!

To get a rough idea of the clock synchronisation of two servers, simply run
python -c 'import time; print(time.time())' on both servers at the same
time. This will give you a number of seconds, and it should be almost the same,
with a difference inferior to 1 second. This number is independent
of the time zone.

To keep your clocks synchronised, use the
Network Time Protocol [http://en.wikipedia.org/wiki/Network_Time_Protocol].

Replication server

If you use multiple databases where at least one is a replica of another,
django-cachalot has no way to know that the replica is modified
automatically, since it happens outside Django.
The SQL queries cached for the replica will therefore not be invalidated,
and you will see some stale queries results.

To fix this problem, you need to tell django-cachalot to also invalidate
the replica when the primary database is invalidated.
Suppose your primary database has the 'default' database alias
in DATABASES, and your replica has the 'replica' alias.
Use the signal and cachalot.api.invalidate() this way:

from cachalot.api import invalidate
from cachalot.signals import post_invalidation
from django.dispatch import receiver

@receiver(post_invalidation)
def invalidate_replica(sender, **kwargs):
 if kwargs['db_alias'] == 'default':
 invalidate(sender, db_alias='replica')

Multiple cache servers for the same database

On large projects, we often end up having multiple Django servers on several
physical machines. For performance reasons, we generally decide to have a cache
per server, while the database stays on a single server. But the problem with
django-cachalot is that it only invalidates the cache configured using
CACHALOT_CACHE. So all caches end up serving stale data.

To avoid this, you need inside each Django server to be able to communicate
with the rest of the servers in order to invalidate other caches when
an invalidation occurs. If this is not possible in your situation, you must not
use django-cachalot. But if you can, each Django server must also have all
other caches in the CACHES setting. Then, you need to manually invalidate
all other caches when an invalidation occurs. Add this to a models.py file
of an installed application:

import threading

from cachalot.api import invalidate
from cachalot.signals import post_invalidation
from django.dispatch import receiver
from django.conf import settings

SIGNAL_INFO = threading.local()

@receiver(post_invalidation)
def invalidate_other_caches(sender, **kwargs):
 if getattr(SIGNAL_INFO, 'was_called', False):
 return
 db_alias = kwargs['db_alias']
 for cache_alias in settings.CACHES:
 if cache_alias == settings.CACHALOT_CACHE:
 continue
 SIGNAL_INFO.was_called = True
 try:
 invalidate(sender, db_alias=db_alias, cache_alias=cache_alias)
 finally:
 SIGNAL_INFO.was_called = False

API

Use these tools to interact with django-cachalot, especially if you face
raw queries limits or if you need to create a cache key from the
last table invalidation timestamp.

	
cachalot.api.invalidate(*tables_or_models, **kwargs)

	Clears what was cached by django-cachalot implying one or more SQL tables
or models from tables_or_models.
If tables_or_models is not specified, all tables found in the database
(including those outside Django) are invalidated.

If cache_alias is specified, it only clears the SQL queries stored
on this cache, otherwise queries from all caches are cleared.

If db_alias is specified, it only clears the SQL queries executed
on this database, otherwise queries from all databases are cleared.

	Parameters

	
	tables_or_models (tuple of strings or models) – SQL tables names, models or models lookups
(or a combination)

	cache_alias (string or NoneType) – Alias from the Django CACHES setting

	db_alias (string or NoneType) – Alias from the Django DATABASES setting

	Returns

	Nothing

	Return type

	NoneType

	
cachalot.api.get_last_invalidation(*tables_or_models, **kwargs)

	Returns the timestamp of the most recent invalidation of the given
tables_or_models. If tables_or_models is not specified,
all tables found in the database (including those outside Django) are used.

If cache_alias is specified, it only fetches invalidations
in this cache, otherwise invalidations in all caches are fetched.

If db_alias is specified, it only fetches invalidations
for this database, otherwise invalidations for all databases are fetched.

	Parameters

	
	tables_or_models (tuple of strings or models) – SQL tables names, models or models lookups
(or a combination)

	cache_alias (string or NoneType) – Alias from the Django CACHES setting

	db_alias (string or NoneType) – Alias from the Django DATABASES setting

	Returns

	The timestamp of the most recent invalidation

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

Benchmark

Contents

	Benchmark

	Introduction

	Conditions

	Database results

	Cache results

	Database detailed results

	MySQL

	PostgreSQL

	SQLite

	Cache detailed results

	File-based

	Locmem

	Memcached (python-memcached)

	Memcached (pylibmc)

	Redis

Introduction

This benchmark does not intend to be exhaustive nor fair to SQL.
It shows how django-cachalot behaves on an unoptimised application.
On an application using perfectly optimised SQL queries only,
django-cachalot may not be useful.
Unfortunately, most Django apps (including Django itself)
use unoptimised queries. Of course, they often lack useful indexes
(even though it only requires 20 characters per index…).
But what you may not know is that
the ORM currently generates totally unoptimised queries 1.

Conditions

In this benchmark, a small database is generated, and each test is executed 20 times under the following conditions:

	CPU

	Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz

	RAM

	24634516 kB

	Disk

	SAMSUNG MZVPW256HEGL-00000

	Linux distribution

	Ubuntu 18.04 bionic

	Python

	3.6.5

	Django

	2.0.7

	cachalot

	2.0.2

	sqlite

	3.22.0

	PostgreSQL

	10.4

	MySQL

	5.7.22

	Redis

	4.0.9

	memcached

	1.5.6

	psycopg2

	2.7.5

	mysqlclient

	1.3.13

Note that
MySQL’s query cache [http://dev.mysql.com/doc/refman/5.7/en/query-cache.html]
is active during the benchmark.

Database results

	mysql is 1.1× slower then 3.9× faster

	postgresql is 1.1× slower then 8.6× faster

	sqlite is 1.1× slower then 4.3× faster

[image: _images/db.svg]

Cache results

	filebased is 1.1× slower then 5.5× faster

	locmem is 1.1× slower then 5.7× faster

	memcached is 1.1× slower then 5.3× faster

	pylibmc is 1.1× slower then 5.5× faster

	redis is 1.1× slower then 5.3× faster

[image: _images/cache.svg]

Database detailed results

MySQL

[image: _images/db_mysql.svg]

PostgreSQL

[image: _images/db_postgresql.svg]

SQLite

[image: _images/db_sqlite.svg]

Cache detailed results

File-based

[image: _images/cache_filebased.svg]

Locmem

[image: _images/cache_locmem.svg]

Memcached (python-memcached)

[image: _images/cache_memcached.svg]

Memcached (pylibmc)

[image: _images/cache_pylibmc.svg]

Redis

[image: _images/cache_redis.svg]
	1

	The ORM fetches way too much data if you don’t restrict it using
.only and .defer. You can divide the execution time
of most queries by 2-3 by specifying what you want to fetch.
But specifying which data we want for each query is very long
and unmaintainable. An automation using field usage statistics
is possible and would drastically improve performance.
Other performance issues occur with slicing.
You can often optimise a sliced query using a subquery, like
YourModel.objects.filter(pk__in=YourModel.objects.filter(…)[10000:10050]).select_related(…)
instead of YourModel.objects.filter(…).select_related(…)[10000:10050].
I’ll maybe work on these issues one day.

What could still be done

	Cache raw queries (may not be possible due to database cursors
being written in C)

	Allow setting CACHALOT_CACHE to None in order to disable django-cachalot
persistence. SQL queries would only be cached during transactions, so setting
ATOMIC_REQUESTS to True would cache SQL queries only during
a request-response cycle. This would be useful for websites with a lot of
invalidations (social network for example), but with several times the same
SQL queries in a single response-request cycle, as it occurs in Django admin.

	Create a command to check clock synchronisation between remote servers

Bug reports, questions, discussion, new features

	If you spotted a bug, please file a precise bug report
on GitHub [https://github.com/noripyt/django-cachalot/issues]

	If you have a question on how django-cachalot works
or to simply discuss,
chat with us on gitter [https://gitter.im/django-cachalot/Lobby].

	If you want to add a feature:

	if you have an idea on how to implement it, you can fork the project
and send a pull request, but please open an issue first, because
someone else could already be working on it

	if you’re sure that it’s a must-have feature, open an issue

	if it’s just a vague idea, please
ask on gitter [https://gitter.im/django-cachalot/Lobby] first

How django-cachalot works

Reverse engineering

It’s a lot of Django reverse engineering combined with a strong test suite.
Such a test suite is crucial for a reverse engineering project.
If some important part of Django changes and breaks the expected behaviour,
you can be sure that the test suite will fail.

Monkey patching

Django-cachalot modifies Django in place during execution to add a caching tool
just before SQL queries are executed.
When a SQL query reads data, we save the result in cache. If that same query is
executed later, we fetch that result from cache.
When we detect INSERT, UPDATE or DELETE, we know which tables are
modified. All the previous cached queries can therefore be safely invalidated.

Legacy

This work is highly inspired of
johnny-cache [https://github.com/jmoiron/johnny-cache], another easy-to-use
ORM caching tool! It’s working with Django <= 1.5.
I used it in production during 3 years, it’s an excellent module!

Unfortunately, we failed to make it migrate to Django 1.6 (I was involved).
It was mostly because of the transaction system that was entirely refactored.

I also noticed a few advanced invalidation issues when using QuerySet.extra
and some complex cases implying multi-table inheritance
and related ManyToManyField.

What’s new in django-cachalot?

2.0.2

	Adds support for .union, .intersection & .difference
that should have been introduced since 1.5.0

	Fixes error raised in some rare and undetermined cases, when the cache
backend doesn’t yield data as expected

2.0.1

	Allows specifying a schema name in Model._meta.db_table

2.0.0

	Adds Django 2.0 support

	Drops Django 1.10 support

	Drops Django 1.8 support (1.9 support was dropped in 1.5.0)

	Adds a check to make sure it is used with a supported Django version

	Fixes a bug partially breaking django-cachalot when an error occurred during
the end of a transaction.atomic block,
typically when using deferred constraints

1.5.0

	Adds Django 1.11 support

	Adds Python 3.6 support

	Drops Django 1.9 support (but 1.8 is still supported)

	Drops Python 3.3 support

	Adds CACHALOT_DATABASES to specify which databases have django-cachalot
enabled (by default, only supported databases are enabled)

	Stops advising users to dynamically override cachalot settings as it cannot
be thread-safe due to Django’s internals

	Invalidates tables after raw CREATE, ALTER & DROP SQL queries

	Allows specifying model lookups like auth.User in the API functions
(previously, it could only be done in the Django template tag, not in the
Jinja2 get_last_invalidation function nor in API functions)

	Fixes the cache used by CachalotPanel if CACHALOT_CACHE is different
from 'default'

	Uploads a wheel distribution of this package to PyPI starting now,
in addition of the source release

	Improves tests

1.4.1

	Fixes a circular import occurring when CachalotPanel is used
and django-debug-toolbar is before django-cachalot in INSTALLED_APPS

	Stops checking compatibility for caches other than CACHALOT_CACHE

1.4.0

	Fixes a bad design: QuerySet.select_for_update was cached, but it’s not
correct since it does not lock data in the database once data was cached,
leading to the database lock being useless in some cases

	Stops automatically invalidating other caches than CACHALOT_CACHE for
consistency, performance, and usefulness reasons

	Fixes a minor issue: the post_invalidation signal was sent during
transactions when calling the invalidate command

	Creates a gitter chat room [https://gitter.im/django-cachalot/Lobby]

	Removes the Slack team. Slack does not allow public chat, this was therefore
a bad idea

1.3.0

	Adds Django 1.10 support

	Drops Django 1.7 support

	Drops Python 3.2 support

	Adds a Jinja2 extension with a cache statement
and the get_last_invalidation function

	Adds a CACHALOT_TIMEOUT setting after dozens
of private & public requests, but it’s not really useful

	Fixes a RuntimeError occurring if a DatabaseCache was used in
a project, even if not used by django-cachalot

	Allows bytes raw queries (except on SQLite where it’s not supposed to work)

	Creates a Slack team [https://django-cachalot.slack.com] to discuss,
easier than using Google Groups

1.2.1

Mandatory update if you’re using django-cachalot 1.2.0.

This version reverts the cache keys hashing change from 1.2.0,
as it was leading to a non-shared cache when Python used a random seed
for hashing, which is the case by default on Python 3.3, 3.4, & 3.5,
and also on 2.7 & 3.2 if you set PYTHONHASHSEED=random.

1.2.0

WARNING: This version is unsafe, it can lead to invalidation errors

	Adds Django 1.9 support

	Simplifies and speeds up cache keys hashing

	Documents how to use django-cachalot with a replica database

	Adds DummyCache to VALID_CACHE_BACKENDS

	Updates the comparison with django-cache-machine & django-cacheops by
checking features and measuring performance instead of relying on their
documentations and a 2-years-ago experience of them

1.1.0

Backwards incompatible changes:

	Adds Django 1.8 support and drops Django 1.6 & Python 2.6 support

	Merges the 3 API functions invalidate_all, invalidate_tables,
& invalidate_models into a single invalidate function
while optimising it

Other additions:

	Adds a get_last_invalidation function to the API and the equivalent
template tag

	Adds a CACHALOT_ONLY_CACHABLE_TABLES setting in order to make a whitelist
of the only table names django-cachalot can cache

	Caches queries with IP addresses, floats, or decimals in parameters

	Adds a Django check to ensure the project uses
compatible cache and database backends

	Adds a lot of tests, especially to test django.contrib.postgres

	Adds a comparison with django-cache-machine and django-cacheops
in the documentation

Fixed:

	Removes a useless extra invalidation during each write operation
to the database, leading to a small speedup
during data modification and tests

	The post_invalidation signal was triggered during transactions
and was not triggered when using the API or raw write queries: both issues
are now fixed

	Fixes a very unlikely invalidation issue occurring only when an error
occurred in a transaction after a transaction of another database nested
in the first transaction was committed, like this:

from django.db import transaction

assert list(YourModel.objects.using('another_db')) == []

try:
 with transaction.atomic():
 with transaction.atomic('another_db'):
 obj = YourModel.objects.using('another_db').create(name='test')
 raise ZeroDivisionError
except ZeroDivisionError:
 pass

Before django-cachalot 1.1.0, this assert was failing.
assert list(YourModel.objects.using('another_db')) == [obj]

1.0.3

	Fixes an invalidation issue that could rarely occur when querying on a
BinaryField with PostgreSQL, or with some geographic queries
(there was a small chance that a same query with different parameters
could erroneously give the same result as the previous one)

	Adds a CACHALOT_UNCACHABLE_TABLES setting

	Fixes a Django 1.7 migrations invalidation issue in tests
(that was leading to this error half of the time:
RuntimeError: Error creating new content types. Please make sure
contenttypes is migrated before trying to migrate apps individually.)

	Optimises tests when using django-cachalot
by avoid several useless cache invalidations

1.0.2

	Fixes an AttributeError occurring when excluding through a many-to-many
relation on a child model (using multi-table inheritance)

	Stops caching queries with random subqueries – for example
User.objects.filter(pk__in=User.objects.order_by('?'))

	Optimises automatic invalidation

	Adds a note about clock synchronisation

1.0.1

	Fixes an invalidation issue discovered by Helen Warren that was occurring
when updating a ManyToManyField after executing using .exclude
on that relation. For example, Permission.objects.all().delete() was not
invalidating User.objects.exclude(user_permissions=None)

	Fixes a UnicodeDecodeError introduced with python-memcached 1.54

	Adds a post_invalidation signal

1.0.0

Fixes a bug occurring when caching a SQL query using a non-ascii table name.

1.0.0rc

Added:

	Adds an invalidate_cachalot command to invalidate django-cachalot
from a script without having to clear the whole cache

	Adds the benchmark introduction, conditions & results to the documentation

	Adds a short guide on how to configure Redis as a LRU cache

Fixed:

	Fixes a rare invalidation issue occurring when updating a many-to-many table
after executing a queryset generating a HAVING SQL statement –
for example,
User.objects.first().user_permissions.add(Permission.objects.first())
was not invalidating
User.objects.annotate(n=Count('user_permissions')).filter(n__gte=1)

	Fixes an even rarer invalidation issue occurring when updating a many-to-many
table after executing a queryset filtering nested subqueries
by another subquery through that many-to-many table – for example:

User.objects.filter(
 pk__in=User.objects.filter(
 pk__in=User.objects.filter(
 user_permissions__in=Permission.objects.all())))

	Avoids setting useless cache keys by using table names instead of
Django-generated table alias

0.9.0

Added:

	Caches all queries implying Queryset.extra

	Invalidates raw queries

	Adds a simple API containing:
invalidate_tables, invalidate_models, invalidate_all

	Adds file-based cache support for Django 1.7

	Adds a setting to choose if random queries must be cached

	Adds 2 settings to customize how cache keys are generated

	Adds a django-debug-toolbar panel

	Adds a benchmark

Fixed:

	Rewrites invalidation for a better speed & memory performance

	Fixes a stale cache issue occurring when an invalidation is done
exactly during a SQL request on the invalidated table(s)

	Fixes a stale cache issue occurring after concurrent transactions

	Uses an infinite timeout

Removed:

	Simplifies cachalot_settings and forbids its use or modification

0.8.1

	Fixes an issue with pip if Django is not yet installed

0.8.0

	Adds multi-database support

	Adds invalidation when altering the DB schema using migrate, syncdb,
flush, loaddata commands (also invalidates South, if you use it)

	Small optimizations & simplifications

	Adds several tests

0.7.0

	Adds thread-safety

	Optimizes the amount of cache queries during transaction

0.6.0

	Adds memcached support

0.5.0

	Adds CACHALOT_ENABLED & CACHALOT_CACHE settings

	Allows settings to be dynamically overridden using cachalot_settings

	Adds some missing tests

0.4.1

	Fixes pip install.

0.4.0 (install broken)

	Adds Travis CI and adds compatibility for:

	Django 1.6 & 1.7

	Python 2.6, 2.7, 3.2, 3.3, & 3.4

	locmem & Redis

	SQLite, PostgreSQL, MySQL

0.3.0

	Handles transactions

	Adds lots of tests for complex cases

0.2.0

	Adds a test suite

	Fixes invalidation for data creation/deletion

	Stops caching on queries defining select or where arguments
with QuerySet.extra

0.1.0

Prototype simply caching all SQL queries reading the database
and trying to invalidate them when SQL queries modify the database.

Has issues invalidating deletions and creations.
Also caches QuerySet.extra queries but can’t reliably invalidate them.
No transaction support, no test, no multi-database support, etc.

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 cachalot	

 	
 	
 cachalot.api	

Index

 C
 | G
 | I

C

 	
 	cachalot.api (module)

G

 	
 	get_last_invalidation() (in module cachalot.api)

I

 	
 	invalidate() (in module cachalot.api)

 _static/comment-bright.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 django-cachalot

 		
 Introduction

 		
 Should you use it?

 		
 Features

 		
 Comparison with similar tools

 		
 Features

 		
 Number of lines of code

 		
 Quick start

 		
 Requirements

 		
 Usage

 		
 Settings

 		
 CACHALOT_ENABLED

 		
 CACHALOT_CACHE

 		
 CACHALOT_DATABASES

 		
 CACHALOT_TIMEOUT

 		
 CACHALOT_CACHE_RANDOM

 		
 CACHALOT_INVALIDATE_RAW

 		
 CACHALOT_ONLY_CACHABLE_TABLES

 		
 CACHALOT_UNCACHABLE_TABLES

 		
 CACHALOT_QUERY_KEYGEN

 		
 CACHALOT_TABLE_KEYGEN

 		
 manage.py command

 		
 Template utils

 		
 Django template tag

 		
 Jinja2 statement and function

 		
 Signal

 		
 Limits

 		
 High rate of database modifications

 		
 Redis

 		
 Memcached

 		
 Locmem

 		
 Filebased

 		
 MySQL

 		
 Raw SQL queries

 		
 Multiple servers clock synchronisation

 		
 Replication server

 		
 Multiple cache servers for the same database

 		
 API

 		
 Benchmark

 		
 Introduction

 		
 Conditions

 		
 Database results

 		
 Cache results

 		
 Database detailed results

 		
 MySQL

 		
 PostgreSQL

 		
 SQLite

 		
 Cache detailed results

 		
 File-based

 		
 Locmem

 		
 Memcached (python-memcached)

 		
 Memcached (pylibmc)

 		
 Redis

 		
 What could still be done

 		
 Bug reports, questions, discussion, new features

 		
 How django-cachalot works

 		
 Reverse engineering

 		
 Monkey patching

 		
 Legacy

 		
 What’s new in django-cachalot?

 		
 2.0.2

 		
 2.0.1

 		
 2.0.0

 		
 1.5.0

 		
 1.4.1

 		
 1.4.0

 		
 1.3.0

 		
 1.2.1

 		
 1.2.0

 		
 1.1.0

 		
 1.0.3

 		
 1.0.2

 		
 1.0.1

 		
 1.0.0

 		
 1.0.0rc

 		
 0.9.0

 		
 0.8.1

 		
 0.8.0

 		
 0.7.0

 		
 0.6.0

 		
 0.5.0

 		
 0.4.1

 		
 0.4.0 (install broken)

 		
 0.3.0

 		
 0.2.0

 		
 0.1.0

_images/django-cachalot.jpg

_static/ajax-loader.gif

